Landauer’s reasoning can be understood by observing that the most fundamental laws of physics are reversible, meaning that if you had complete knowledge of the state of a closed system at some time, you could always—at least in principle—run the laws of physics in reverse and determine the system’s exact state at any previous time.

The Future of Computing Depends on Making It Reversible

Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary condition for reversibility is that the relation of the mapping from states to their successors must be one-to-one. Reversible computing is a form of unconventional computing.

A process is said to be physically reversible if it results in no increase in physical entropy; it is isentropic. There is a style of circuit design ideally exhibiting this property that is referred to as charge recovery logic, adiabatic circuits, or adiabatic computing (see Adiabatic process). Although in practice no nonstationary physical process can be exactly physically reversible or isentropic, there is no known limit to the closeness with which we can approach perfect reversibility, in systems that are sufficiently well isolated from interactions with unknown external environments, when the laws of physics describing the system’s evolution are precisely known.

Wikipedia Reversible computing